Semidefinite programming and convex algebraic geometry

Pablo A. Parrilo

WWw.mit.edu/~parrilo

Laboratory for Information and Decision Systems
Electrical Engineering and Computer Science
Massachusetts Institute of Technology

This talk

a Convex sets with algebraic descriptions
e The role of semidefinite programming and sums of squares

Q Unifying idea: convex hull of algebraic varieties
Q Examples and applications throughout

- Discuss results, but also open questions
a Connections with other areas of mathematics

Convex sets: geometry vs. algebra

The geometric theory of convex sets (e.g., Minkowski, Carathéodory, Fenchel) is very rich and well-understood.

Enormous importance in applied mathematics and engineering, in particular in optimization.
But, what if we are concerned with the representation of these geometric objects? For instance, basic semialgebraic sets?

How do the algebraic, geometric, and computational aspects interact?

The polyhedral case

Consider first the case of polyhedra, which are described by finitely many linear inequalities $\left\{x \in \mathbb{R}^{n}: a_{i}^{T} x \leq b_{i}\right\}$.

Q Behave well under projections (Fourier-Motzkin)
Q Farkas lemma (or duality) gives emptiness certificates
e Good associated computational techniques
e Optimization over polyhedra is linear programming (LP)

The polyhedral case

Consider first the case of polyhedra, which are described by finitely many linear inequalities $\left\{x \in \mathbb{R}^{n}: a_{i}^{T} x \leq b_{i}\right\}$.

Q Behave well under projections (Fourier-Motzkin)
Q Farkas lemma (or duality) gives emptiness certificates
e Good associated computational techniques
e Optimization over polyhedra is linear programming (LP)
Great. But how to move away from linearity? For instance, if we want convex sets described by polynomial inequalities?

Claim: semidefinite programming is an essential tool.

Semidefinite programming (SDP, LMIs)

A broad generalization of LP to symmetric matrices

$$
\min \operatorname{Tr} C X \quad \text { s.t. } \quad X \in \mathcal{L} \cap \mathcal{S}_{+}^{n}
$$

Q Intersection of an affine subspace \mathcal{L} and the cone of positive semidefinite matrices.

Q Lots of applications. A true "revolution" in computational methods for engineering applications
e Originated in control theory and combinatorial optimization. Nowadays, applied everywhere.
a Convex finite dimensional optimization. Nice duality theory.
a Essentially, solvable in polynomial time (interior point, etc.)

Example

Consider the feasible set of the SDP:

$$
\left[\begin{array}{ccc}
x & 0 & y \\
0 & 1 & -x \\
y & -x & 1
\end{array}\right] \succeq 0
$$

e Convex, but not necessarily polyhedral
e In general, piecewise-smooth
Q Determinant vanishes on the boundary
In this case, the determinant is the elliptic curve $x-x^{3}=y^{2}$.

Symbolic vs. numerical computation

An ongoing discussion. Clearly, both have advantages/disadvantages.
e "Exact solutions" vs. "approximations"
e "Input data often inexact"
e "Global" vs. "local". One vs. all solutions.
e Computational models: bits vs. reals. Encoding of solutions.
"Best" method depends on the context. Hybrid symbolic-numeric methods are an interesting possibility.

SDP bring some interesting new twists.

Algebraic aspects of SDP

In LPs with rational data, the optimal solution is rational. Not so for SDP.
e Optimal solutions of relatively small SDPs generically have minimum defining polynomials of very high degree.
e Example (von Bothmer and Ranestad): For $n=20, m=105$, the algebraic degree of the optimal solution is $\approx 1.67 \times 10^{41}$.
a Explicit algebraic representations are absolutely impossible to compute (even without worrying about coefficient size!).
a Nevertheless, interior point methods yield arbitrary precision numerical approximations!

SDP provides an efficient, and numerically convenient encoding.
Representation does not pay the price of high algebraic complexity.
For more about the algebraic degree of SDP, see Nie-Ranestad-Sturmfels (arXiv:math/0611562) and von Bothmer-Ranestad (arXiv:math.AG/0701877).

Semidefinite representations

A natural question in convex optimization:
What sets can be represented using semidefinite programming?

Semidefinite representations

A natural question in convex optimization:
What sets can be represented using semidefinite programming?
In the LP case, well-understood question: finite number of extreme points (polyhedral sets)

Semidefinite representations

A natural question in convex optimization:
What sets can be represented using semidefinite programming?
In the LP case, well-understood question: finite number of extreme points (polyhedral sets)

Are there "obstructions" to SDP representability?

Known SDP-representable sets

Q Many interesting sets are known to be SDP-representable (e.g., polyhedra, convex quadratics, matrix norms, etc.)

Q Preserved by "natural" properties: affine transformations, convex hull, polarity, etc.
e Several known structural results (e.g., facial exposedness)

Work of Nesterov-Nemirovski, Ramana, Tunçel, Güler, Renegar, Chua, etc.

Existing results

Obvious necessary conditions: \mathcal{S} must be convex and semialgebraic.

Existing results

Obvious necessary conditions: \mathcal{S} must be convex and semialgebraic.
Several versions of the problem:
e Exact vs. approximate representations.
e "Direct" (non-lifted) representations: no additional variables.

$$
x \in \mathcal{S} \quad \Leftrightarrow \quad A_{0}+\sum_{i} x_{i} A_{i} \succeq 0
$$

Q "Lifted" representations: can use extra variables (projection)

$$
x \in \mathcal{S} \quad \Leftrightarrow \quad \exists y \text { s.t. } A_{0}+\sum_{i} x_{i} A_{i}+\sum y_{j} B_{j} \succeq 0
$$

Projection helps a lot!

Liftings and projections

Often, "simpler" descriptions of convex sets from higher-dimensional spaces.
Ex: The n-dimensional crosspolytope (ℓ_{1} unit ball). Requires 2^{n}
linear inequalities, of the form

$$
\pm x_{1} \pm x_{2} \pm \cdots \pm x_{n} \leq 1
$$

However, can efficiently represent it as the projection (on x) of:

$$
\left\{(x, y) \in \mathbb{R}^{2 n}, \quad \sum_{i=1}^{n} y_{i} \leq 1, \quad-y_{i} \leq x_{i} \leq y_{i} \quad i=1, \ldots, n\right\}
$$

Only $2 n$ variables, and $2 n+1$ constraints!
In convexity, elimination is not always a good idea.
Quite the opposite, it is often advantageous to go to higher-dimensional spaces, where descriptions (can) become simpler.

Exact representations: direct case

$$
x \in \mathcal{S} \quad \Leftrightarrow \quad A_{0}+\sum_{i} x_{i} A_{i} \succeq 0
$$

Exact representations: direct case

$$
x \in \mathcal{S} \quad \Leftrightarrow \quad A_{0}+\sum_{i} x_{i} A_{i} \succeq 0
$$

Necessary condition: "rigid convexity." Every line through the set must intersect the Zariski closure of the boundary a constant number of times (equal to the degree of the curve).
[Assume $A_{0} \succ 0$, and let $x_{i}=t \beta_{i}$. Then $q(t):=\operatorname{det}\left(A_{0}+\sum x_{i} A_{i}\right)=\operatorname{det}\left(A_{0}+t \cdot \sum \beta_{i} A_{i}\right)$ has all its d roots real.]

Exact representations: direct case

$$
x \in \mathcal{S} \quad \Leftrightarrow \quad A_{0}+\sum_{i} x_{i} A_{i} \succeq 0
$$

Necessary condition: "rigid convexity." Every line through the set must intersect the Zariski closure of the boundary a constant number of times (equal to the degree of the curve).
[Assume $A_{0} \succ 0$, and let $x_{i}=t \beta_{i}$. Then $q(t):=\operatorname{det}\left(A_{0}+\sum x_{i} A_{i}\right)=\operatorname{det}\left(A_{0}+t \cdot \sum \beta_{i} A_{i}\right)$ has all its d roots real.] Helton \& Vinnikov (2004) proved that in \mathbb{R}^{2}, this is also sufficient.

Related to hyperbolic polynomials and the Lax conjecture (Güler, Renegar, Lewis-P.-Ramana 2005)

For higher dimensions the problem is open.

Representations of hyperbolic polynomials

A homogeneous polynomial $p(x) \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is hyperbolic with respect to the direction $e \in \mathbb{R}^{n}$ if $t \mapsto p(x-t e)$ has only real roots for all $x \in \mathbb{R}^{n}$.

Representations of hyperbolic polynomials

A homogeneous polynomial $p(x) \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is hyperbolic with respect to the direction $e \in \mathbb{R}^{n}$ if $t \mapsto p(x-t e)$ has only real roots for all $x \in \mathbb{R}^{n}$.

Ex: Let A, B, C be symmetric matrices, with $A \succ 0$. The polynomial

$$
p(x, y, z)=\operatorname{det}(A x+B y+C z)
$$

is hyperbolic wrt $e=(1,0,0)$ (eigenvalues of symm. matrices are real).

Representations of hyperbolic polynomials

A homogeneous polynomial $p(x) \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is hyperbolic with respect to the direction $e \in \mathbb{R}^{n}$ if $t \mapsto p(x-t e)$ has only real roots for all $x \in \mathbb{R}^{n}$.

Ex: Let A, B, C be symmetric matrices, with $A \succ 0$. The polynomial

$$
p(x, y, z)=\operatorname{det}(A x+B y+C z)
$$

is hyperbolic wrt $e=(1,0,0)$ (eigenvalues of symm. matrices are real).

Thm ("Lax Conjecture"): If $p(x, y, z)$ is hyperbolic wrt e, then it has such a determinantal representation.

Exact representations: lifted case

$$
x \in \mathcal{S} \quad \Leftrightarrow \quad \exists y \text { s.t. } A_{0}+\sum_{i} x_{i} A_{i}+\sum y_{j} B_{j} \succeq 0
$$

Exact representations: lifted case

$$
x \in \mathcal{S} \quad \Leftrightarrow \quad \exists y \text { s.t. } A_{0}+\sum_{i} x_{i} A_{i}+\sum y_{j} B_{j} \succeq 0
$$

No known nontrivial obstructions.
Does every convex basic SA set have a (lifted) exact SDP representation?

Exact representations: lifted case

$$
x \in \mathcal{S} \quad \Leftrightarrow \quad \exists y \text { s.t. } A_{0}+\sum_{i} x_{i} A_{i}+\sum y_{j} B_{j} \succeq 0
$$

No known nontrivial obstructions.
Does every convex basic SA set have a (lifted) exact SDP representation?

A recent positive partial answer.
Theorem (Helton \& Nie 2007): Under strict positive curvature assumptions on the boundary, lifted SDP representations exist.

No direct control on lifting dimension.
For details, see arXiv:0709.4017

Exact representations: lifted case

$$
x \in \mathcal{S} \quad \Leftrightarrow \quad \exists y \text { s.t. } A_{0}+\sum_{i} x_{i} A_{i}+\sum y_{j} B_{j} \succeq 0
$$

No known nontrivial obstructions.
Does every convex basic SA set have a (lifted) exact SDP representation?

A recent positive partial answer.
Theorem (Helton \& Nie 2007): Under strict positive curvature assumptions on the boundary, lifted SDP representations exist.

No direct control on lifting dimension.
For details, see arXiv:0709.4017
How are these representations obtained? Is this constructive at all?

SOS background

A multivariate polynomial $p(x)$ is a sum of squares (SOS) if

$$
p(x)=\sum_{i} q_{i}^{2}(x), \quad q_{i}(x) \in \mathbb{R}[x] .
$$

e If $p(x)$ is SOS, then clearly $p(x) \geq 0 \forall x \in \mathbb{R}^{n}$.
e Converse not true, in general (Hilbert). Counterexamples exist.
e For univariate or quadratics, nongativity is equivalent to SOS.
e Convex condition, can be reduced to SDP.

Checking the SOS condition

Basic method, the "Gram matrix" (Shor 87, Choi-Lam-Reznick 95, Powers-Wörmann 98, Nesterov, Lasserre, P., etc.)
$F(x)$ is SOS iff $F(x)=w(x)^{T} Q w(x)$, where $w(x)$ is a vector of monomials, and $Q \succeq 0$.

Let $F(x)=\sum f_{\alpha} x^{\alpha}$. Index rows and columns of Q by monomials. Then,

$$
F(x)=w(x)^{T} Q w(x) \quad \Leftrightarrow \quad f_{\alpha}=\sum_{\beta+\gamma=\alpha} Q_{\beta \gamma}
$$

Thus, we have the SDP feasibility problem

$$
f_{\alpha}=\sum_{\beta+\gamma=\alpha} Q_{\beta \gamma}, \quad Q \succeq 0
$$

Q Factorize $Q=L^{T} L$. The SOS is given by $f=L z$.

SOS Example

$$
\begin{aligned}
F(x, y) & =2 x^{4}+5 y^{4}-x^{2} y^{2}+2 x^{3} y \\
& =\left[\begin{array}{c}
x^{2} \\
y^{2} \\
x y
\end{array}\right]^{T}\left[\begin{array}{lll}
q_{11} & q_{12} & q_{13} \\
q_{12} & q_{22} & q_{23} \\
q_{13} & q_{23} & q_{33}
\end{array}\right]\left[\begin{array}{c}
x^{2} \\
y^{2} \\
x y
\end{array}\right] \\
& =q_{11} x^{4}+q_{22} y^{4}+\left(q_{33}+2 q_{12}\right) x^{2} y^{2}+2 q_{13} x^{3} y+2 q_{23} x y^{3}
\end{aligned}
$$

An SDP with equality constraints. Solving, we obtain:

$$
Q=\left[\begin{array}{ccc}
2 & -3 & 1 \\
-3 & 5 & 0 \\
1 & 0 & 5
\end{array}\right]=L^{T} L, \quad L=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
2 & -3 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

And therefore $F(x, y)=\frac{1}{2}\left(2 x^{2}-3 y^{2}+x y\right)^{2}+\frac{1}{2}\left(y^{2}+3 x y\right)^{2}$

Polynomial systems over \mathbb{R}

Q When do equations and inequalities have real solutions?
e A remarkable answer: the Positivstellensatz.
a Centerpiece of real algebraic geometry (Stengle 1974).
e Common generalization of Hilbert's Nullstellensatz and LP duality.
a Guarantees the existence of algebraic infeasibility certificates for real solutions of systems of polynomial equations.
e Sums of squares are a fundamental ingredient.
How does it work?

P-satz and SOS

Given $\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \geq 0, \quad h_{i}(x)=0\right\}$, want to prove that it is empty. Define:

$$
\operatorname{Cone}\left(f_{i}\right)=\sum s_{i} \cdot\left(\prod_{j} f_{j}\right), \quad \operatorname{Ideal}\left(h_{i}\right)=\sum t_{i} \cdot h_{i}
$$

where the $s_{i}, t_{i} \in \mathbb{R}[x]$ and the s_{i} are sums of squares.
To prove infeasibility, find $f \in \operatorname{Cone}\left(f_{i}\right), h \in \operatorname{Ideal}\left(h_{i}\right)$ such that

$$
f+h=-1
$$

a Can find certificates by solving SOS programs!
a Complete SOS hierarchy, by certificate degree (P. 2000).
a Directly provides hierarchies of bounds for optimization.

Convex hulls of algebraic varieties

Back to SDP representations...

Convex hulls of algebraic varieties

Back to SDP representations...
Focus here on a specific, but very important case.

Convex hulls of algebraic varieties

Back to SDP representations...
Focus here on a specific, but very important case.
Given a set $S \subset \mathbb{R}^{n}$, we can define its convex hull

$$
\operatorname{conv} S:=\left\{\sum_{i} \lambda_{i} x_{i}: x_{i} \in S, \sum_{i} \lambda_{i}=1, \lambda_{i} \geq 0\right\}
$$

We are interested in the case where S is a real algebraic variety.

Why?

Many interesting problems require or boil down exactly to understanding and describing convex hulls of (toric) algebraic varieties.
e Nonnegative polynomials and optimization
e Polynomial games
e Convex relaxations for minimum-rank
We discuss these next.

Polynomial optimization

Consider the unconstrained minimization of a multivariate polynomial

$$
p(x)=\sum_{\alpha \in S} p_{\alpha} x^{\alpha},
$$

where $x \in \mathbb{R}^{n}$ and S is a given set of monomials (e.g., all monomials of total degree less than or equal to $2 d$, in the dense case).
Define the (real, toric) algebraic variety $V_{S} \subset \mathbb{R}^{|S|}$:

$$
V_{S}:=\left\{\left(x^{\alpha_{1}}, \ldots, x^{\alpha_{|S|}}\right): x \in \mathbb{R}^{n}\right\} .
$$

This is the image of \mathbb{R}^{n} under the monomial map (e.g., in the homogeneous case, the Veronese embedding).

Want to study the convex hull of V_{S}. Extends to the constrained case.

Univariate case

Convex hull of the rational normal curve $\left(1, t, \ldots, t^{d}\right)$.
Not polyhedral.
Known geometry (Karlin-Shapley)

"Simplicial": every supporting hyperplane yields a simplex.
Related to cyclic polytopes.

Polynomial optimization

We have then (almost trivially):

$$
\inf _{x \in \mathbb{R}^{n}} p(x)=\inf \left\{p^{T} y: y \in \operatorname{conv} V_{S}\right\}
$$

Optimizing a nonconvex polynomial is equivalent to linear optimization over a convex set (!)

Polynomial optimization

We have then (almost trivially):

$$
\inf _{x \in \mathbb{R}^{n}} p(x)=\inf \left\{p^{T} y: y \in \operatorname{conv} V_{S}\right\}
$$

Optimizing a nonconvex polynomial is equivalent to linear optimization over a convex set (!)

Unfortunately, in general, it is NP-hard to check membership in conv V_{S}.
Nevertheless, we can turn this around, and use SOS relaxations to obtain "good" approximate SDP descriptions of the convex hull V_{S}.

A "polar" viewpoint

Any convex set \mathcal{S} is uniquely defined by its supporting hyperplanes.

Thus, if we can optimize a linear function over a set using SDP, we effectively have an SDP representation.

Need to solve (or approximate)

$$
\min c^{T} x \quad \text { s.t. } x \in \mathcal{S}
$$

If \mathcal{S} is defined by polynomial equations/inequalities, can use SOS .

A natural SOS approach

Let $\mathcal{S}=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \geq 0\right\}$. Different conditions exist to certify nonnegativity of $c^{T} x+d$ over \mathcal{S} :

Q General Positivstellensatz type:

$$
(1+q)\left(c^{T} x+d\right) \in \operatorname{cone}_{k+1}\left(f_{i}\right), \quad q \in \operatorname{cone}_{k}\left(f_{i}\right)
$$

e Schmüdgen, Putinar/Lasserre:

$$
c^{T} x+d \in \operatorname{cone}_{k}\left(f_{i}\right), \quad \text { or } \quad c^{T} x+d \in \mathbf{p r e p r i m e}_{k}\left(f_{i}\right)
$$

where preprime ${ }_{k} \subseteq$ cone $_{k} \subseteq \mathbb{R}_{k}[x]$. All these versions give convergent families of SDP approximations.

For instance, Putinar/Lasserre representations:

$$
c^{T} x+d=s_{0}(x)+\sum_{i} s_{i}(x) f_{i}(x), \quad s_{0}, s_{i} \text { are SOS. }
$$

An SDP representation of \mathcal{S} exists if degree is uniform.

Example

Consider the set described by $x^{4}+y^{4} \leq 1$
e Fails the rigid convexity condition.
e The SOS construction is exact.

Example

Consider the set described by $x^{4}+y^{4} \leq 1$
e Fails the rigid convexity condition.
e The SOS construction is exact.
Unfortunately, the SOS construction is not universal. Even if lifted SDP representations exist, it may fail. However, by the Helton-Nie theorem, this can happen only on the vanishing curvature case, or on singularities.

SOS fails

SOS schemes (Schmüdgen, Putinar/Lasserre) give outer approximations, but in this example they are never exact.

SOS fails

SOS schemes (Schmüdgen, Putinar/Lasserre) give outer approximations, but in this example they are never exact.

Can prove that this happens for all values of k.

SDP representation exist

Thus, the set above can be represented as:

$$
\left[\begin{array}{lll}
z & x & y \\
x & 1 & 0 \\
y & 0 & 1
\end{array}\right] \succeq 0, \quad\left[\begin{array}{lll}
x & y & z \\
y & x & 0 \\
z & 0 & x
\end{array}\right] \succeq 0
$$

SDP representation exist

Thus, the set above can be represented as:

$$
\left[\begin{array}{lll}
z & x & y \\
x & 1 & 0 \\
y & 0 & 1
\end{array}\right] \succeq 0, \quad\left[\begin{array}{lll}
x & y & z \\
y & x & 0 \\
z & 0 & x
\end{array}\right] \succeq 0 .
$$

In this case, We can obtain SDP representations in an algorithmic way, via an alternative P-satz construction.

SDP representation exist

Thus, the set above can be represented as:

$$
\left[\begin{array}{lll}
z & x & y \\
x & 1 & 0 \\
y & 0 & 1
\end{array}\right] \succeq 0, \quad\left[\begin{array}{lll}
x & y & z \\
y & x & 0 \\
z & 0 & x
\end{array}\right] \succeq 0
$$

In this case, We can obtain SDP representations in an algorithmic way, via an alternative P-satz construction.

Still, not fully general. But, can do some cool examples...

Example: orthogonal matrices

Consider $O(3)$, the group of 3×3 orthogonal matrices of determinant one. It has two connected components (sign of determinant).

We can use the double-cover of $S O(3)$ with $S U(2)$ to provide an exact SDP representation of the convex hull of $S O(3)$:

$$
\left[\begin{array}{ccc}
Z_{11}+Z_{22}-Z_{33}-Z_{44} & 2 Z_{23}-2 Z_{14} & 2 Z_{24}+2 Z_{13} \\
2 Z_{23}+2 Z_{14} & Z_{11}-Z_{22}+Z_{33}-Z_{44} & 2 Z_{34}-2 Z_{12} \\
2 Z_{24}-2 Z_{13} & 2 Z_{34}+2 Z_{12} & Z_{11}-Z_{22}-Z_{33}+Z_{44}
\end{array}\right], \quad Z \succeq 0, \quad \operatorname{Tr} Z=1
$$

This is a convex set in \mathbb{R}^{9}.
Here is a two-dimensional projection.

Polynomial games

Games with an infinite number of pure strategies.
In particular, strategy sets are semialgebraic, defined by polynomial equations and inequalities.

Simplest case (introduced by Dresher-Karlin-Shapley): two players, zero-sum, payoff given by $P(x, y)$, strategy space is a product of intervals.

Polynomial games

Games with an infinite number of pure strategies.
In particular, strategy sets are semialgebraic, defined by polynomial equations and inequalities.

Simplest case (introduced by Dresher-Karlin-Shapley): two players, zero-sum, payoff given by $P(x, y)$, strategy space is a product of intervals. Reducible to a minimax problem, over convex hulls of algebraic varieties (the mixed strategies).

Polynomial games

Games with an infinite number of pure strategies.
In particular, strategy sets are semialgebraic, defined by polynomial equations and inequalities.

Simplest case (introduced by Dresher-Karlin-Shapley): two players, zero-sum, payoff given by $P(x, y)$, strategy space is a product of intervals.

Reducible to a minimax problem, over convex hulls of algebraic varieties (the mixed strategies).
Thm: (P.) The value of the game, and the corresponding optimal mixed strategies, can be computed by solving a SDP program.

Perfect generalization of the classical LP for finite games.
Related results for multiplayer games and correlated equilibria (w/N. Stein and A. Ozdaglar).

Minimum rank and convex relaxations

Consider the rank minimization problem

$$
\text { minimize } \operatorname{rank} X \quad \text { subject to } \mathcal{A}(X)=b,
$$

where $\mathcal{A}: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p}$ is a linear map.
Find the minimum-rank matrix in a given subspace. In general, NP-hard.

Minimum rank and convex relaxations

Consider the rank minimization problem

$$
\text { minimize } \operatorname{rank} X \quad \text { subject to } \mathcal{A}(X)=b
$$

where $\mathcal{A}: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p}$ is a linear map.
Find the minimum-rank matrix in a given subspace. In general, NP-hard.
Since rank is hard, let's use instead its convex envelope, the nuclear norm.
The nuclear norm of a matrix (alternatively, Schatten 1-norm, Ky Fan r-norm, or trace class norm) is the sum of its singular values, i.e.,

$$
\|X\|_{*}:=\sum_{i=1}^{r} \sigma_{i}(X) .
$$

Convex hulls and nuclear norm

Consider the unit ball of the nuclear norm $B:=\left\{X \in \mathbb{R}^{m \times n}:\|X\|_{*} \leq 1\right\}$.
Convex hull characterization:

$$
B=\operatorname{conv}\left\{u v^{T}: u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n},\|u\|^{2}+\|v\|^{2}=2\right\}
$$

Exactly SDP-characterizable. Can solve the convex relaxation using SDP.

Convex hulls and nuclear norm

Consider the unit ball of the nuclear norm $B:=\left\{X \in \mathbb{R}^{m \times n}:\|X\|_{*} \leq 1\right\}$.
Convex hull characterization:

$$
B=\operatorname{conv}\left\{u v^{T}: u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n},\|u\|^{2}+\|v\|^{2}=2\right\}
$$

Exactly SDP-characterizable. Can solve the convex relaxation using SDP.
Under certain conditions (e.g., if \mathcal{A} is "random"), optimizing the nuclear norm yields the true minimum rank solution.

Connections to "compressed sensing".

For details, see arXiv:0706.4138: Recht-Fazel-P., "Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization" (2007)

Connections

Many fascinating links to other areas of mathematics:
e Probability (moments, exchangeability and de Finetti, etc)
e Operator theory (via Gelfand-Neimark-Segal)
e Harmonic analysis on semigroups

- Noncommutative probability (i.e., quantum mechanics)
- Complexity and proof theory (degrees of certificates)
- Graph theory (perfect graphs)
e Tropical geometry (SDP over more general fields)

Exploiting structure

Algebraic structure

Q Sparseness: few nonzero coefficients.
e Newton polytopes techniques.
e Ideal structure: equality constraints.
e SOS on quotient rings.
e Compute in the coordinate ring. Quotient bases.
e Graph structure:
e Dependency graph among the variables.
e Symmetries: invariance under a group (w/ K. Gatermann)
e SOS on invariant rings
e Representation theory and invariant-theoretic methods.
e Enabling factor in applications (e.g., Markov chains)

Numerical structure

e Rank one SDPs.
e Dual coordinate change makes all constraints rank one
e Efficient computation of Hessians and gradients
a Representations
e Interpolation representation
e Orthogonalization
e Displacement rank
e Fast solvers for search direction

Related work

e Related basic work: N.Z. Shor, Nesterov, Lasserre, etc.
a Systems and control (Prajna, Rantzer, Hol-Scherer, etc.)
e Sparse optimization (Waki-Kim-Kojima-Muramatsu, Lasserre, Nie-Demmel, etc.)
e Approximation algorithms (de Klerk-Laurent-P.)
a Filter design (Alkire-Vandenberghe, Hachez-Nesterov, etc.)
e Stability number of graphs (Laurent, Peña, Rendl)
a Geometric theorem proving (P.-Peretz)
e Quantum information theory (Doherty-Spedalieri-P., Childs-Landahl-P.)
e Joint spectral radius (P.-Jadbabaie)

Summary

e A very rich class of optimization problems
e Methods have enabled many new applications
e Interplay of many branches of mathematics
Q Structure must be exploited for reliability and efficiency
e Combination of numerical and algebraic techniques.

Summary

Q A very rich class of optimization problems
e Methods have enabled many new applications
e Interplay of many branches of mathematics
e Structure must be exploited for reliability and efficiency
e Combination of numerical and algebraic techniques.

If you want to know more:
e Papers, slides, lecture notes, software, etc.: www.mit.edu/ ${ }^{\text {parrilo }}$
e Upcoming "SDP and convex algebraic geometry" NSF FRG website www.math.washington.edu/ ${ }^{\text {thomas }} / \mathrm{frg} / \mathrm{frg} . \mathrm{html}$ (Helton/P./Nie/Sturmfels/Thomas)

Summary

Q A very rich class of optimization problems
e Methods have enabled many new applications
e Interplay of many branches of mathematics
e Structure must be exploited for reliability and efficiency
e Combination of numerical and algebraic techniques.

If you want to know more:
e Papers, slides, lecture notes, software, etc.: www.mit.edu/ ${ }^{\text {parrilo }}$
Q Upcoming "SDP and convex algebraic geometry" NSF FRG website www.math.washington.edu/~thomas/frg/frg.html (Helton/P./Nie/Sturmfels/Thomas)

Thanks for your attention!

